Construct Binary Tree from Preorder and Inorder Traversal
描述
Given preorder and inorder traversal of a tree, construct the binary tree.
Note: You may assume that duplicates do not exist in the tree.
分析
无
代码
- Python
- Java
- C++
// Construct Binary Tree from Preorder and Inorder Traversal
// 递归,时间复杂度O(n),空间复杂度O(\logn)
public class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
return buildTree(preorder, 0, preorder.length,
inorder, 0, inorder.length);
}
TreeNode buildTree(int[] preorder, int begin1, int end1,
int[] inorder, int begin2, int end2) {
if (begin1 == end1) return null;
if (begin2 == end2) return null;
TreeNode root = new TreeNode(preorder[begin1]);
int inRootPos = find(inorder, begin2, end2, preorder[begin1]);
int leftSize = inRootPos - begin2;
root.left = buildTree(preorder, begin1 + 1, begin1 + leftSize + 1,
inorder, begin2, begin2 + leftSize);
root.right = buildTree(preorder, begin1 + leftSize + 1, end1,
inorder, inRootPos + 1, end2);
return root;
}
private static int find(int[] array, int begin, int end, int val) {
for (int i = begin; i < end; ++i) {
if (array[i] == val) return i;
}
return -1;
}
}
// Construct Binary Tree from Preorder and Inorder Traversal
// 递归,时间复杂度O(n),空间复杂度O(\logn)
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
return buildTree(begin(preorder), end(preorder),
begin(inorder), end(inorder));
}
template<typename InputIterator>
TreeNode* buildTree(InputIterator pre_first, InputIterator pre_last,
InputIterator in_first, InputIterator in_last) {
if (pre_first == pre_last) return nullptr;
if (in_first == in_last) return nullptr;
auto root = new TreeNode(*pre_first);
auto inRootPos = find(in_first, in_last, *pre_first);
auto leftSize = distance(in_first, inRootPos);
root->left = buildTree(next(pre_first), next(pre_first,
leftSize + 1), in_first, next(in_first, leftSize));
root->right = buildTree(next(pre_first, leftSize + 1), pre_last,
next(inRootPos), in_last);
return root;
}
};
# Construct Binary Tree from Preorder and Inorder Traversal
# 递归,时间复杂度O(n),空间复杂度O(\logn)
class Solution:
def buildTree(self, preorder, inorder):
return self._build_tree(preorder, 0, len(preorder),
inorder, 0, len(inorder))
def _build_tree(self, preorder, begin1, end1,
inorder, begin2, end2):
if begin1 == end1:
return None
if begin2 == end2:
return None
root = TreeNode(preorder[begin1])
inRootPos = self._find(inorder, begin2, end2, preorder[begin1])
leftSize = inRootPos - begin2
root.left = self._build_tree(preorder, begin1 + 1, begin1 + leftSize + 1,
inorder, begin2, begin2 + leftSize)
root.right = self._build_tree(preorder, begin1 + leftSize + 1, end1,
inorder, inRootPos + 1, end2)
return root
def _find(self, array, begin, end, val):
for i in range(begin, end):
if array[i] == val:
return i
return -1