跳到主要内容

Subsets

描述

Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example, If S = [1,2,3], a solution is:

[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]

递归

增量构造法

每个元素,都有两种选择,选或者不选。

# Subsets
# Incremental construction method, DFS, time complexity O(2^n), space complexity O(n)
def subsets(nums):
nums.sort() # output needs to be ordered
result = []
path = []
_subsets(nums, path, 0, result)
return result

def _subsets(nums, path, step, result):
if step == len(nums):
result.append(path[:])
return
# don't select nums[step]
_subsets(nums, path, step + 1, result)
# select nums[step]
path.append(nums[step])
_subsets(nums, path, step + 1, result)
path.pop()

位向量法

开一个位向量bool selected[n],每个元素可以选或者不选。

// Subsets
// 位向量法,深搜,时间复杂度O(2^n),空间复杂度O(n)
public class Solution {
public List<List<Integer>> subsets(int[] nums) {
Arrays.sort(nums); // 输出要求有序

List<List<Integer>> result = new ArrayList<>();
boolean[] selected = new boolean[nums.length];
subsets(nums, selected, 0, result);
return result;
}

private static void subsets(int[] nums, boolean[] selected, int step,
List<List<Integer>> result) {
if (step == nums.length) {
ArrayList<Integer> subset = new ArrayList<>();
for (int i = 0; i < nums.length; i++) {
if (selected[i]) subset.add(nums[i]);
}
result.add(subset);
return;
}
// 不选S[step]
selected[step] = false;
subsets(nums, selected, step + 1, result);
// 选S[step]
selected[step] = true;
subsets(nums, selected, step + 1, result);
}
}

迭代

增量构造法

// Subsets
// 迭代版,时间复杂度O(2^n),空间复杂度O(1)
public class Solution {
public List<List<Integer>> subsets(int[] nums) {
Arrays.sort(nums); // 输出要求有序
List<List<Integer>> result = new ArrayList<>();
result.add(new ArrayList<>()); // empty subset
for (int elem : nums) {
final int n = result.size();
for (int i = 0; i < n; ++i) { // copy itself
result.add(new ArrayList<>(result.get(i)));
}
for (int i = n; i < result.size(); ++i) {
result.get(i).add(elem);
}
}
return result;
}
}

二进制法

本方法的前提是:集合的元素不超过 int 位数。用一个 int 整数表示位向量,第i位为 1,则表示选择S[i],为 0 则不选择。例如 S={A,B,C,D},则0110=6表示子集 {B,C}

这种方法最巧妙。因为它不仅能生成子集,还能方便的表示集合的并、交、差等集合运算。设两个集合的位向量分别为B1B_1B2B_2,则B1B2,B1B2,B1B2B_1\cup B_2, B_1 \cap B_2, B_1 \triangle B_2分别对应集合的并、交、对称差。

二进制法,也可以看做是位向量法,只不过更加优化。

// Subsets
// 二进制法,时间复杂度O(2^n),空间复杂度O(1)
public class Solution {
public List<List<Integer>> subsets(int[] nums) {
Arrays.sort(nums); // 输出要求有序
List<List<Integer>> result = new ArrayList<>();
final int n = nums.length;
ArrayList<Integer> v = new ArrayList<>();

for (int i = 0; i < 1 << n; i++) {
for (int j = 0; j < n; j++) {
if ((i & 1 << j) > 0) v.add(nums[j]);
}
result.add(new ArrayList<>(v));
v.clear();
}
return result;
}
}

相关题目