跳到主要内容

Majority Element II

描述

Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times.

Follow-up: Could you solve the problem in linear time and in O(1) space?

Example 1:

Input: nums = [3,2,3]
Output: [3]

Example 2:

Input: nums = [1] > Output: [1]

Example 3:

Input: nums = [1,2] > Output: [1,2]

Constraints:

  • 1 \leq nums.length \leq 5 \times 10^4
  • -10^9 \leq nums[i] \leq 10^9

分析

给定一个长度为n的数组,我们知道下面一些结论是成立的:

  • 最多只有一个元素能出现超过 ⌊n/2⌋ 次.
  • 最多只有两个元素能出现超过 ⌊n/3⌋ 次.
  • 最多只有三个元素能出现超过 ⌊n/4⌋ 次.

以此类推。

Boyer-Moore 投票算法就是依据上面的原理而实现的。

代码

# Majority Element II
# Time Complexity: O(nlogn), Space Complexity: O(1)
class Solution(object):
def majorityElement(self, nums: List[int])->List[int]:
# 1st pass
count1, count2 = 0, 0
# candidates must be initalized to different values
candidate1, candidate2 = 0, 1

for num in nums:
if candidate1 == num:
count1 += 1
elif candidate2 == num:
count2 += 1
elif count1 == 0:
candidate1 = num
count1 = 1
elif count2 == 0:
candidate2 = num
count2 = 1
else:
count1 -= 1
count2 -= 1

# 2nd pass
result = []
for c in [candidate1, candidate2]:
if nums.count(c) > len(nums)/3:
result.append(c)

return result

相关题目