跳到主要内容

Permutations

描述

Given a collection of numbers, return all possible permutations.

For example, [1,2,3] have the following permutations: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

代码

递归

# Permutations
# Recursive
# Time Complexity: O(n!), Space Complexity: O(n)
class Solution:
def permute(self, nums: list[int]) -> list[list[int]]:
nums.sort()
result = []
self.dfs(nums, 0, result)
return result

def dfs(self, nums: list[int], start: int, result: list[list[int]]) -> None:
if start == len(nums):
result.append(nums[:])
return

for i in range(start, len(nums)):
self.swap(nums, start, i)
self.dfs(nums, start + 1, result)
self.swap(nums, start, i) # restore

def swap(self, nums: list[int], i: int, j: int) -> None:
nums[i], nums[j] = nums[j], nums[i]

next_permutation()

函数 next_permutation()的具体实现见这节 Next Permutation

// Permutations
// 重新实现 next_permutation()
// 时间复杂度O(n!),空间复杂度O(1)
public class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
Arrays.sort(nums);

do {
ArrayList<Integer> one = new ArrayList<>();
for (int i : nums) {
one.add(i);
}
result.add(one);
// 调用的是 2.1.12 节的 next_permutation()
// 而不是 std::next_permutation()
} while(nextPermutation(nums, 0, nums.length));
return result;
}
// 代码来自 2.1.12 节的 next_permutation()
private static boolean nextPermutation(int[] nums, int begin, int end) {
// From right to left, find the first digit(partitionNumber)
// which violates the increase trend
int p = end - 2;
while (p > -1 && nums[p] >= nums[p + 1]) --p;

// If not found, which means current sequence is already the largest
// permutation, then rearrange to the first permutation and return false
if(p == -1) {
reverse(nums, begin, end);
return false;
}

// From right to left, find the first digit which is greater
// than the partition number, call it changeNumber
int c = end - 1;
while (c > 0 && nums[c] <= nums[p]) --c;

// Swap the partitionNumber and changeNumber
swap(nums, p, c);
// Reverse all the digits on the right of partitionNumber
reverse(nums, p+1, end);
return true;
}
private static void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
private static void reverse(int[] nums, int begin, int end) {
end--;
while (begin < end) {
swap(nums, begin++, end--);
}
}
}

相关题目