跳到主要内容

Longest Palindromic Substring

描述

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

分析

最长回文子串,非常经典的题。

最简单的思路是暴力枚举,两两组合枚举所有的子串,检查每个子串是否是回文串,以每个元素为中间元素,时间复杂度O(n^3)

可以换一种思路进行暴力枚举,以每个字符为中心,双指针背向而行,检测子串是否是回文串,时间复杂度O(n^2)。不过要注意,回文子串有两种情况,奇数和偶数,枚举的时候要覆盖这2种情况。

代码

中心线枚举算法

# Longest Palindromic Substring
# Center enumeration algorithm
# Time complexity O(n^2), Space complexity O(1)
class Solution:
def longestPalindrome(self, s: str) -> str:
longest = ""
for i in range(len(s)):
# palindrome substring with odd length
odd_palindrome = self.get_palindrome(s, i, i)
if len(longest) < len(odd_palindrome):
longest = odd_palindrome

# palindrome substring with even length
even_palindrome = self.get_palindrome(s, i, i + 1)
if len(longest) < len(even_palindrome):
longest = even_palindrome

return longest

def get_palindrome(self, s: str, left: int, right: int) -> str:
while left >= 0 and right < len(s):
if s[left] != s[right]:
break
left -= 1
right += 1
return s[left + 1:right]

Manacher’s Algorithm

// Longest Palindromic Substring
// Manacher’s Algorithm
// 时间复杂度O(n),空间复杂度O(n)
class Solution {
// Transform S into T.
// For example, S = "abba", T = "^#a#b#b#a#$".
// ^ and $ signs are sentinels appended to each end to avoid bounds checking
public String preProcess(final String s) {
int n = s.length();
if (n == 0) return "^$";

StringBuilder ret = new StringBuilder("^");
for (int i = 0; i < n; i++) ret.append("#" + s.charAt(i));

ret.append("#$");
return ret.toString();
}

String longestPalindrome(String s) {
String T = preProcess(s);
final int n = T.length();
// 以T[i]为中心,向左/右扩张的长度,不包含T[i]自己,
// 因此 P[i]是源字符串中回文串的长度
int[] P = new int[n];
int C = 0, R = 0;

for (int i = 1; i < n - 1; i++) {
int iMirror = 2 * C - i; // equals to i' = C - (i-C)

P[i] = (R > i) ? Math.min(R - i, P[iMirror]) : 0;

// Attempt to expand palindrome centered at i
while (T.charAt(i + 1 + P[i]) == T.charAt(i - 1 - P[i]))
P[i]++;

// If palindrome centered at i expand past R,
// adjust center based on expanded palindrome.
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
}

// Find the maximum element in P.
int maxLen = 0;
int centerIndex = 0;
for (int i = 1; i < n - 1; i++) {
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
}

final int start =(centerIndex - 1 - maxLen) / 2;
return s.substring(start, start + maxLen);
}
}