跳到主要内容

Course Schedule

描述

TODO

分析

TODO

代码

BFS

// Course Schedule
// Time complexity: O(E+V)
// Space complexity: O(E+V)
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>()); // adjacent list
vector<int> in(numCourses); // in degree
for (auto p : prerequisites) {
graph[p[1]].push_back(p[0]);
++in[p[0]];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i) {
if (in[i] == 0) q.push(i);
}
while (!q.empty()) {
int t = q.front(); q.pop();
for (auto neighbor : graph[t]) {
--in[neighbor];
if (in[neighbor] == 0) q.push(neighbor);
}
}
for (int i = 0; i < numCourses; ++i) {
if (in[i] != 0) return false;
}
return true;
}
};

DFS

// Course Schedule
// Time complexity: O(E+V)
// Space complexity: O(E+V)
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>()); // // adjacent list
vector<int> visited(numCourses); // 0, not visited; 1, visited; -1, cyclic
for (auto p : prerequisites) {
graph[p[1]].push_back(p[0]);
}
for (int i = 0; i < numCourses; ++i) {
if (!canFinishDFS(graph, visited, i)) return false;
}
return true;
}
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visited, int i) {
if (visited[i] == -1) return false;
if (visited[i] == 1) return true;
visited[i] = -1;
for (auto neighbor : graph[i]) {
if (!canFinishDFS(graph, visited, neighbor)) return false;
}
visited[i] = 1;
return true;
}
};

相关题目