跳到主要内容

Super Ugly Number

描述

Write a function to find the n-th super ugly number.

Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 super ugly numbers given primes = [2, 7, 13, 19] of size 4.

Note:

  1. 1 is a super ugly number for any given primes.
  2. The given numbers in primes are in ascending order.
  3. 0 < k ≤ 100, 0 < n ≤ 1000000, 0 < primes[i] < 1000.

分析

这题是 Ugly Number II 的扩展。在"Ugly Number II"中,primes=[2,3,5],这题中primes可以自由变化。

所以这题可以用"Ugly Number II"的思路解决。每次要从多个列表中选择最小的元素,我们可以维护一个大小为primes长度的小根堆。

代码

// Super Ugly Number
// Time complexity: O(n), Space complexity: O(n)
public class Solution {
public int nthSuperUglyNumber(int n, int[] primes) {
final int[] nums = new int[n];
nums[0] = 1; // 1 is the first ugly number
final Queue<Node> q = new PriorityQueue<>();
for (int i = 0; i < primes.length; ++i) {
q.add(new Node(0, primes[i], primes[i]));
}

for (int i = 1; i < n; ++i) {
// get the min element and add to nums
Node node = q.peek();
nums[i] = node.val;

// update top elements
do {
node = q.poll();
node.val = nums[++node.index] * node.prime;
q.add(node); // push it back
// prevent duplicate
} while (!q.isEmpty() && q.peek().val == nums[i]);
}
return nums[n - 1];
}
static class Node implements Comparable<Node> {
private int index;
private int val;
private int prime;

public Node(int index, int val, int prime) {
this.index = index;
this.val = val;
this.prime = prime;
}
public int compareTo(Node other) {
return this.val - other.val;
}
}
}

相关题目