Employee Free Time
描述
We are given a list schedule
of employees, which represents the working time for each employee.
Each employee has a list of non-overlapping Intervals
, and these intervals are in sorted order.
Return the list of finite intervals representing common, positive-length free time for all employees, also in sorted order.
(Even though we are representing Intervals
in the form [x, y]
, the objects inside are Intervals
, not lists or arrays. For example, schedule[0][0].start = 1
, schedule[0][0].end = 2
, and schedule[0][0][0]
is not defined). Also, we wouldn't include intervals like [5, 5] in our answer, as they have zero length.
Example 1:
Input: schedule = [[[1,2],[5,6]],[[1,3]],[[4,10]]]
Output: [[3,4]]
Explanation: There are a total of three employees, and all common free time intervals would be [-inf, 1], [3, 4], [10, inf]. We discard any intervals that contain inf as they aren't finite.
Example 2:
Input: schedule = [[[1,3],[6,7]],[[2,4]],[[2,5],[9,12]]]
Output: [[5,6],[7,9]]
Constraints:
- 1 <= schedule.length , schedule[i].length <= 50
- 0 <= schedule[i].start < schedule[i].end <= 10^8
分析
这题求的是区间之间的空白段,跟 Merge Intervals是反过来的,所以可以直接复用 Merge Intervals 的代码,然后取反即可。
代码
- Java
- C++
// Employee Free Time
// 时间复杂度O(n),空间复杂度O(1)
public class Solution {
public List<Interval> employeeFreeTime(List<List<Interval>> schedule) {
List<Interval> merged = merge(schedule.stream()
.flatMap(List::stream)
.collect(Collectors.toList()));
List<Interval> result = new ArrayList<>();
for (int i = 0; i < merged.size()-1; ++i) {
result.add(new Interval(merged.get(i).end, merged.get(i+1).start ));
}
return result;
}
private List<Interval> merge(List<Interval> intervals) {
List<Interval> result = new ArrayList<>();
for (int i = 0; i < intervals.size(); i++) {
insert(result, intervals.get(i));
}
return result;
}
private static List<Interval> insert(List<Interval> intervals,
Interval newInterval) {
for (int i = 0; i < intervals.size();) {
final Interval cur = intervals.get(i);
if (newInterval.end < cur.start) {
intervals.add(i, newInterval);
return intervals;
} else if (newInterval.start > cur.end) {
++i;
continue;
} else {
newInterval.start = Math.min(newInterval.start, cur.start);
newInterval.end = Math.max(newInterval.end, cur.end);
intervals.remove(i);
}
}
intervals.add(newInterval);
return intervals;
}
}
// TODO