跳到主要内容

Maximum Gap

描述

Given an unsorted array, find the maximum difference between the successive elements in its sorted form.

Try to solve it in linear time/space.

Return 0 if the array contains less than 2 elements.

You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.

分析

这道题最直接的解法是,先排序,得到有序数组,然后相邻元素相减,找出差最大的,时间复杂度O(n log n)

然而本题要求O(n)时间,有没有O(n)的排序算法呢?桶排序、基数排序、计数排序。

解法 1 桶排序

// Maximum Gap
// Bucket Sort
// Time Complexity: O(n+k), Space Complexity: O(n+k)
public class Solution {
public int maximumGap(int[] nums) {
if (nums.length < 2) return 0;
bucketSort(nums);

int maxDiff = Integer.MIN_VALUE;
for (int i = 1; i < nums.length; ++i) {
maxDiff = Math.max(maxDiff, nums[i] - nums[i - 1]);
}
return maxDiff;
}

private static void bucketSort(int[] nums) {
if (nums.length < 2) return;
int minValue = Integer.MAX_VALUE;
int maxValue = Integer.MIN_VALUE;

for (int i : nums) {
minValue = Math.min(minValue, i);
maxValue = Math.max(maxValue, i);
}

final int bucketSize = (maxValue - minValue) / nums.length + 1;
final int bucketCount = (maxValue - minValue) / bucketSize + 1;
final ArrayList<Integer>[] buckets = new ArrayList[bucketCount];
for (int i = 0; i < buckets.length; ++i) {
buckets[i] = new ArrayList<>();
}

for (int x : nums) {
final int index = (x - minValue) / bucketSize;
buckets[index].add(x);
}

for (final ArrayList<Integer> list : buckets) {
Collections.sort(list);
}

int i = 0;
for (final ArrayList<Integer> list : buckets) {
for (int x : list) {
nums[i++] = x;
}
}
}
}

解法 2 基数排序

// Maximum Gap
// Radix Sort
// Time Complexity: O(nd), Space Complexity: O(n+d)
public class Solution {
public int maximumGap(int[] nums) {
if (nums.length < 2) return 0;
radixSort(nums);

int maxDiff = Integer.MIN_VALUE;
for (int i = 1; i < nums.length; ++i) {
maxDiff = Math.max(maxDiff, nums[i] - nums[i - 1]);
}
return maxDiff;
}
private static void radixSort(int[] nums) {
int minValue = Integer.MAX_VALUE;
int maxValue = Integer.MIN_VALUE;

for (int i : nums) {
minValue = Math.min(minValue, i);
maxValue = Math.max(maxValue, i);
}

final int D = Integer.toString(maxValue - minValue).length();
final ArrayList<Integer>[] buckets = new ArrayList[10];
for (int i = 0; i < buckets.length; ++i) {
buckets[i] = new ArrayList<>();
}

for (int i = 0; i < D; ++i) {
for (int x : nums) {
final int index = getDigit(x - minValue, i);
final ArrayList<Integer> bucket = buckets[index];
bucket.add(x);
}

int index = 0;
for (ArrayList<Integer> bucket : buckets) {
for (int x : bucket) {
nums[index++] = x;
}
bucket.clear();
}
}
}

// get the i-th digit of n
private static int getDigit(int n, int i) {
for (int j = 0; j < i; ++j) {
n /= 10;
}
return n % 10;
}
}

解法 3 计数排序

计数排序本质上是一种特殊的桶排序,当桶的个数最大的时候,就是计数排序。

本题用计数排序会 MLE。

// Maximum Gap
// Counting Sort
// Time Complexity: O(n), Space Complexity: O(max-min)
public class Solution {
public int maximumGap(int[] nums) {
if (nums.length < 2) return 0;
countingSort(nums);

int maxDiff = Integer.MIN_VALUE;
for (int i = 1; i < nums.length; ++i) {
maxDiff = Math.max(maxDiff, nums[i] - nums[i - 1]);
}
return maxDiff;
}
private static void countingSort(int[] nums) {
int minValue = Integer.MAX_VALUE;
int maxValue = Integer.MIN_VALUE;

for (int i : nums) {
minValue = Math.min(minValue, i);
maxValue = Math.max(maxValue, i);
}

final int[] buckets = new int[maxValue - minValue + 1];

for (int i : nums) {
buckets[i - minValue]++;
}

for (int i = 0, index = 0; i < buckets.length; ++i) {
Arrays.fill(nums, index, index + buckets[i], i + minValue);
index += buckets[i];
}
}
}