Surrounded Regions
描述
Given a 2D board containing 'X'
and 'O'
, capture all regions surrounded by 'X'
.
A region is captured by flipping all 'O'
s into 'X'
s in that surrounded region .
For example,
X X X X
X O O X
X X O X
X O X X
After running your function, the board should be:
X X X X
X X X X
X X X X
X O X X
分析
广搜。从上下左右四个边界往里走,凡是能碰到的'O'
,都是跟边界接壤的,应该保留。
代码
- Java
- C++
// Surrounded Regions
// BFS,时间复杂度O(n),空间复杂度O(n)
public class Solution {
public void solve(char[][] board) {
if (board.length == 0) return;
final int m = board.length;
final int n = board[0].length;
for (int i = 0; i < n; i++) {
bfs(board, 0, i);
bfs(board, m - 1, i);
}
for (int j = 1; j < m - 1; j++) {
bfs(board, j, 0);
bfs(board, j, n - 1);
}
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
if (board[i][j] == 'O')
board[i][j] = 'X';
else if (board[i][j] == '+')
board[i][j] = 'O';
}
private static void bfs(char[][] board, int i, int j) {
Queue<State> q = new LinkedList<>();
final int m = board.length;
final int n = board[0].length;
final Function<State, Boolean> stateIsValid = (State s) -> {
if (s.x < 0 || s.x >= m || s.y < 0 || s.y >= n ||
board[s.x][s.y] != 'O')
return false;
return true;
};
final Function<State, ArrayList<State>> stateExtend = (State s) -> {
ArrayList<State> result = new ArrayList<>();
final int x = s.x;
final int y = s.y;
// 上下左右
State[] newStates = new State[]{new State(x-1, y),
new State(x+1,y),
new State(x,y-1),
new State(x,y+1)
};
for (int k = 0; k < 4; ++k) {
if (stateIsValid.apply(newStates[k])) {
// 既有标记功能又有去重功能
board[newStates[k].x][newStates[k].y] = '+';
result.add(newStates[k]);
}
}
return result;
};
State start = new State(i, j);
if (stateIsValid.apply(start)) {
board[i][j] = '+';
q.offer(start);
}
while (!q.isEmpty()) {
State cur = q.poll();
ArrayList<State> newStates = stateExtend.apply(cur);
for (State s : newStates) q.offer(s);
}
}
static class State {
private int x;
private int y;
public State(int x, int y) {
this.x = x;
this.y = y;
}
}
}
// LeetCode, Surrounded Regions
// BFS,时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
void solve(vector<vector<char>> &board) {
if (board.empty()) return;
const int m = board.size();
const int n = board[0].size();
for (int i = 0; i < n; i++) {
bfs(board, 0, i);
bfs(board, m - 1, i);
}
for (int j = 1; j < m - 1; j++) {
bfs(board, j, 0);
bfs(board, j, n - 1);
}
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
if (board[i][j] == 'O')
board[i][j] = 'X';
else if (board[i][j] == '+')
board[i][j] = 'O';
}
private:
void bfs(vector<vector<char>> &board, int i, int j) {
typedef pair<int, int> state_t;
queue<state_t> q;
const int m = board.size();
const int n = board[0].size();
auto state_is_valid = [&](const state_t &s) {
const int x = s.first;
const int y = s.second;
if (x < 0 || x >= m || y < 0 || y >= n || board[x][y] != 'O')
return false;
return true;
};
auto state_extend = [&](const state_t &s) {
vector<state_t> result;
const int x = s.first;
const int y = s.second;
// 上下左右
const state_t new_states[4] = {{x-1,y}, {x+1,y},
{x,y-1}, {x,y+1}};
for (int k = 0; k < 4; ++k) {
if (state_is_valid(new_states[k])) {
// 既有标记功能又有去重功能
board[new_states[k].first][new_states[k].second] = '+';
result.push_back(new_states[k]);
}
}
return result;
};
state_t start = { i, j };
if (state_is_valid(start)) {
board[i][j] = '+';
q.push(start);
}
while (!q.empty()) {
auto cur = q.front();
q.pop();
auto new_states = state_extend(cur);
for (auto s : new_states) q.push(s);
}
}
};