跳到主要内容

Binary Tree Postorder Traversal

描述

Given a binary tree, return the postorder traversal of its nodes' values.

For example: Given binary tree {1,#,2,3},

 1
\
2
/
3

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

分析

用栈或者 Morris 遍历。

# Binary Tree Postorder Traversal
# 使用栈,时间复杂度O(n),空间复杂度O(n)
class Solution:
def postorderTraversal(self, root):
result = []
s = []
# p,正在访问的结点,q,刚刚访问过的结点
p = root
q = None
while True:
while p: # 往左下走
s.append(p)
p = p.left
q = None
while s:
p = s.pop()
# 右孩子不存在或已被访问,访问之
if p.right == q:
result.append(p.val)
q = p # 保存刚访问过的结点
else:
# 当前结点不能访问,需第二次进栈
s.append(p)
# 先处理右子树
p = p.right
break
if not s:
break
return result

Morris 后序遍历

// Binary Tree Postorder Traversal
// Morris后序遍历,时间复杂度O(n),空间复杂度O(1)
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
ArrayList<Integer> result = new ArrayList<>();
TreeNode dummy = new TreeNode(-1);
dummy.left = root;
TreeNode cur = dummy;
TreeNode prev = null;

while (cur != null) {
if (cur.left == null) {
prev = cur; /* 必须要有 */
cur = cur.right;
} else {
TreeNode node = cur.left;
while (node.right != null && node.right != cur)
node = node.right;

if (node.right == null) { /* 还没线索化,则建立线索 */
node.right = cur;
prev = cur; /* 必须要有 */
cur = cur.left;
} else { /* 已经线索化,则访问节点,并删除线索 */
visit_reverse(cur.left, prev, result);
prev.right = null;
prev = cur; /* 必须要有 */
cur = cur.right;
}
}
}
return result;
}
// 逆转路径
private static void reverse(TreeNode from, TreeNode to) {
TreeNode x = from;
TreeNode y = from.right;
TreeNode z = null;
if (from == to) return;

while (x != to) {
z = y.right;
y.right = x;
x = y;
y = z;
}
}

// 访问逆转后的路径上的所有结点
private static void visit_reverse(TreeNode from, TreeNode to,
List<Integer> result) {
TreeNode p = to;
reverse(from, to);

while (true) {
result.add(p.val);
if (p == from)
break;
p = p.right;
}

reverse(to, from);
}
}

相关题目