Symmetric Tree
描述
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1
/ \
2 2
\ \
3 3
Note: Bonus points if you could solve it both recursively and iteratively.
分析
无
递归版
- Python
- Java
- C++
// Symmetric Tree
// 递归版,时间复杂度O(n),空间复杂度O(logn)
public class Solution {
public boolean isSymmetric(TreeNode root) {
if (root == null) return true;
return isSymmetric(root.left, root.right);
}
private static boolean isSymmetric(TreeNode p, TreeNode q) {
if (p == null && q == null) return true; // 终止条件
if (p == null || q == null) return false; // 终止条件
return p.val == q.val // 三方合并
&& isSymmetric(p.left, q.right)
&& isSymmetric(p.right, q.left);
}
}
// Symmetric Tree
// 递归版,时间复杂度O(n),空间复杂度O(logn)
class Solution {
public:
bool isSymmetric(TreeNode *root) {
if (root == nullptr) return true;
return isSymmetric(root->left, root->right);
}
bool isSymmetric(TreeNode *p, TreeNode *q) {
if (p == nullptr && q == nullptr) return true; // 终止条件
if (p == nullptr || q == nullptr) return false; // 终止条件
return p->val == q->val // 三方合并
&& isSymmetric(p->left, q->right)
&& isSymmetric(p->right, q->left);
}
};
# Symmetric Tree
# Recursive solution, time complexity O(n), space complexity O(logn)
class Solution:
def isSymmetric(self, root: TreeNode) -> bool:
if not root:
return True
return self.isSymmetricHelper(root.left, root.right)
def isSymmetricHelper(self, p: TreeNode, q: TreeNode) -> bool:
if not p and not q: # Termination condition
return True
if not p or not q: # Termination condition
return False
return p.val == q.val and \ # Three-way combination
self.isSymmetricHelper(p.left, q.right) and \
self.isSymmetricHelper(p.right, q.left)
迭代版
- Java
- C++
// Symmetric Tree
// 迭代版,时间复杂度O(n),空间复杂度O(logn)
public class Solution {
public boolean isSymmetric (TreeNode root) {
if (root == null) return true;
Stack<TreeNode> s = new Stack<>();
s.push(root.left);
s.push(root.right);
while (!s.isEmpty()) {
TreeNode p = s.pop ();
TreeNode q = s.pop ();
if (p == null && q == null) continue;
if (p == null || q == null) return false;
if (p.val != q.val) return false;
s.push(p.left);
s.push(q.right);
s.push(p.right);
s.push(q.left);
}
return true;
}
}
// Symmetric Tree
// 迭代版,时间复杂度O(n),空间复杂度O(logn)
class Solution {
public:
bool isSymmetric (TreeNode* root) {
if (!root) return true;
stack<TreeNode*> s;
s.push(root->left);
s.push(root->right);
while (!s.empty ()) {
auto p = s.top (); s.pop();
auto q = s.top (); s.pop();
if (!p && !q) continue;
if (!p || !q) return false;
if (p->val != q->val) return false;
s.push(p->left);
s.push(q->right);
s.push(p->right);
s.push(q->left);
}
return true;
}
};
# Symmetric Tree
# Iterative version, time complexity O(n), space complexity O(logn)
class Solution:
def isSymmetric(self, root):
if not root:
return True
s = []
s.append(root.left)
s.append(root.right)
while s:
p = s.pop()
q = s.pop()
if not p and not q:
continue
if not p or not q:
return False
if p.val != q.val:
return False
s.append(p.left)
s.append(q.right)
s.append(p.right)
s.append(q.left)
return True