Minimum Depth of Binary Tree
描述
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
分析
无
递归版
- Python
- Java
- C++
// Minimum Depth of Binary Tree
// 递归版,时间复杂度O(n),空间复杂度O(logn)
public class Solution {
public int minDepth(TreeNode root) {
return minDepth(root, false);
}
private static int minDepth(TreeNode root, boolean hasbrother) {
if (root == null) return hasbrother ? Integer.MAX_VALUE : 0;
return 1 + Math.min(minDepth(root.left, root.right != null),
minDepth(root.right, root.left != null));
}
}
// Minimum Depth of Binary Tree
// 递归版,时间复杂度O(n),空间复杂度O(logn)
class Solution {
public:
int minDepth(const TreeNode *root) {
return minDepth(root, false);
}
private:
static int minDepth(const TreeNode *root, bool hasbrother) {
if (!root) return hasbrother ? INT_MAX : 0;
return 1 + min(minDepth(root->left, root->right != NULL),
minDepth(root->right, root->left != NULL));
}
};
# Minimum Depth of Binary Tree
# 递归版,时间复杂度O(n),空间复杂度O(logn)
class Solution:
def minDepth(self, root):
return self._minDepth(root, False)
def _minDepth(self, root, hasbrother):
if not root:
return float('inf') if hasbrother else 0
return 1 + min(self._minDepth(root.left, root.right is not None),
self._minDepth(root.right, root.left is not None))
迭代版
- Java
- C++
// Minimum Depth of Binary Tree
// 迭代版,时间复杂度O(n),空间复杂度O(logn)
public class Solution {
public int minDepth(TreeNode root) {
if (root == null) return 0;
int result = Integer.MAX_VALUE;
Stack<Pair> s = new Stack<>();
s.push(new Pair(root, 1));
while (!s.empty()) {
final Pair p = s.pop();
TreeNode node = p.node;
int depth = p.depth;
if (node.left == null && node.right == null)
result = Math.min(result, depth);
if (node.left != null && result > depth) // 深度控制,剪枝
s.push(new Pair(node.left, depth + 1));
if (node.right != null && result > depth) // 深度控制,剪枝
s.push(new Pair(node.right, depth + 1));
}
return result;
}
static class Pair {
TreeNode node;
int depth;
public Pair(TreeNode node, int depth) {
this.node = node;
this.depth = depth;
}
}
}
// Minimum Depth of Binary Tree
// 迭代版,时间复杂度O(n),空间复杂度O(logn)
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == nullptr)
return 0;
int result = INT_MAX;
stack<pair<TreeNode*, int>> s;
s.push(make_pair(root, 1));
while (!s.empty()) {
auto node = s.top().first;
auto depth = s.top().second;
s.pop();
if (node->left == nullptr && node->right == nullptr)
result = min(result, depth);
if (node->left && result > depth) // 深度控制,剪枝
s.push(make_pair(node->left, depth + 1));
if (node->right && result > depth) // 深度控制,剪枝
s.push(make_pair(node->right, depth + 1));
}
return result;
}
};
# Minimum Depth of Binary Tree
# 迭代版,时间复杂度O(n),空间复杂度O(logn)
class Solution:
def minDepth(self, root):
if not root:
return 0
result = float('inf')
stack = []
stack.append((root, 1))
while stack:
node, depth = stack.pop()
if not node.left and not node.right:
result = min(result, depth)
if node.left and result > depth: # 深度控制,剪枝
stack.append((node.left, depth + 1))
if node.right and result > depth: # 深度控制,剪枝
stack.append((node.right, depth + 1))
return result