跳到主要内容

Scramble String

描述

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
/ \
gr eat
/ \ / \
g r e at
/ \
a t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

分析

首先想到的是递归(即深搜),对两个 string 进行分割,然后比较四对字符串。代码虽然简单,但是复杂度比较高。有两种加速策略,一种是剪枝,提前返回;一种是加缓存,缓存中间结果,即 memorization(翻译为记忆化搜索)。

剪枝可以五花八门,要充分观察,充分利用信息,找到能让节点提前返回的条件。例如,判断两个字符串是否互为 scamble,至少要求每个字符在两个字符串中出现的次数要相等,如果不相等则返回 false。

加缓存,可以用数组或 HashMap。本题维数较高,用 HashMap,mapunordered_map均可。

既然可以用记忆化搜索,这题也一定可以用动规。设状态为f[n][i][j],表示长度为n,起点为s1[i]和起点为s2[j]两个字符串是否互为 scramble,则状态转移方程为

f[n][i][j]} =  (f[k][i][j] && f[n-k][i+k][j+k])
|| (f[k][i][j+n-k] && f[n-k][i+k][j])

递归

// Scramble String
// 递归,会超时,仅用来帮助理解
// 时间复杂度O(n^6),空间复杂度O(1)
public class Solution {
public boolean isScramble(String s1, String s2) {
return isScramble(s1, 0, s1.length(), s2, 0);
}
private static boolean isScramble(String s1, int begin1, int end1,
String s2, int begin2) {
final int length = end1 - begin1;
final int end2 = begin2 + length;

if (length == 1) return s1.charAt(begin1) == s2.charAt(begin2);

for (int i = 1; i < length; ++i)
if ((isScramble(s1, begin1, begin1 + i, s2, begin2)
&& isScramble(s1, begin1 + i, end1, s2, begin2 + i))
|| (isScramble(s1, begin1, begin1 + i, s2, end2 - i)
&& isScramble(s1, begin1 + i, end1, s2, begin2)))
return true;

return false;
}
}

动规

// Scramble String
// 动规,时间复杂度O(n^3),空间复杂度O(n^3)
public class Solution {
public boolean isScramble(String s1, String s2) {
final int N = s1.length();
if (N != s2.length()) return false;

// f[n][i][j],表示长度为n,起点为s1[i]和
// 起点为s2[j]两个字符串是否互为scramble
boolean[][][] f = new boolean[N+1][N][N];

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
f[1][i][j] = s1.charAt(i) == s2.charAt(j);

for (int n = 1; n <= N; ++n) {
for (int i = 0; i + n <= N; ++i) {
for (int j = 0; j + n <= N; ++j) {
for (int k = 1; k < n; ++k) {
if ((f[k][i][j] && f[n - k][i + k][j + k]) ||
(f[k][i][j + n - k] && f[n - k][i + k][j])) {
f[n][i][j] = true;
break;
}
}
}
}
}
return f[N][0][0];
}
}

递归+剪枝

// Scramble String
// 递归+剪枝
// 时间复杂度O(n^6),空间复杂度O(1)
public class Solution {
public boolean isScramble(String s1, String s2) {
return isScramble(s1, 0, s1.length(), s2, 0);
}
private static boolean isScramble(String s1, int begin1, int end1,
String s2, int begin2) {
final int length = end1 - begin1;
final int end2 = begin2 + length;
if (length == 1) return s1.charAt(begin1) == s2.charAt(begin2);

// 剪枝,提前返回
int[] A = new int[26]; // 每个字符的计数器
for(int i = 0; i < length; i++) A[s1.charAt(begin1+i)-'a']++;
for(int i = 0; i < length; i++) A[s2.charAt(begin2+i)-'a']--;
for(int i = 0; i < 26; i++) if (A[i] != 0) return false;

for (int i = 1; i < length; ++i)
if ((isScramble(s1, begin1, begin1 + i, s2, begin2)
&& isScramble(s1, begin1 + i, end1, s2, begin2 + i))
|| (isScramble(s1, begin1, begin1 + i, s2, end2 - i)
&& isScramble(s1, begin1 + i, end1, s2, begin2)))
return true;

return false;
}
}

备忘录法

// Scramble String
// 递归+map做cache
// 时间复杂度O(n^3),空间复杂度O(n^3), TLE
public class Solution {
public boolean isScramble(String s1, String s2) {
cache.clear();
return isScramble(s1, 0, s1.length(), s2, 0);
}

final private HashMap<Triple, Boolean> cache = new HashMap<>();

private boolean isScramble(String s1, int begin1, int end1,
String s2, int begin2) {
final int length = end1 - begin1;
final int end2 = begin2 + length;

if (length == 1) return s1.charAt(begin1) == s2.charAt(begin2);

for (int i = 1; i < length; ++i)
if ((getOrUpdate(s1, begin1, begin1 + i, s2, begin2)
&& getOrUpdate(s1, begin1 + i, end1, s2, begin2 + i))
|| (getOrUpdate(s1, begin1, begin1 + i, s2, end2 - i)
&& getOrUpdate(s1, begin1 + i, end1, s2, begin2)))
return true;

return false;
}

boolean getOrUpdate(String s1, int begin1, int end1,
String s2, int begin2) {
Triple key = new Triple(begin1, end1, begin2);
if (!cache.containsKey(key)) {
boolean result = isScramble(s1, begin1, end1, s2, begin2);
cache.put(key, result);
return result;
} else {
return cache.get(key);
}
}
static class Triple {
private int i;
private int j;
private int k;

public Triple(int i, int j, int k) {
this.i = i;
this.j = j;
this.k = k;
}
@Override
public int hashCode() {
int hash = 0;
hash = i * 31 + j;
hash = hash * 31 * k;
return hash;
}
@Override
public boolean equals(Object other) {
if (this == other) return true;
if (this.hashCode() != other.hashCode()) return false;
if (!(other instanceof Triple)) return false;
Triple o = (Triple)other;
return this.i == o.i && this.j == o.j && this.k == o.k;
}
}
}