跳到主要内容

Palindrome Partitioning II

描述

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",

Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

分析

定义状态f(i,j)表示区间[i,j]之间最小的 cut 数,则状态转移方程为

f(i,j)=min{f(i,k)+f(k+1,j)},ikj,0ij<nf(i,j)=\min\left\{f(i,k)+f(k+1,j)\right\}, i \leq k \leq j, 0 \leq i \leq j<n

这是一个二维函数,实际写代码比较麻烦。

所以要转换成一维 DP。如果每次,从 i 往右扫描,每找到一个回文就算一次 DP 的话,就可以转换为f(i)=区间[i, n-1]之间最小的cut数,n 为字符串长度,则状态转移方程为

f(i)=min{f(j+1)+1},ij<nf(i)=\min\left\{f(j+1)+1\right\}, i \leq j<n

一个问题出现了,就是如何判断[i,j]是否是回文?每次都从 i 到 j 比较一遍?太浪费了,这里也是一个 DP 问题。

定义状态 P[i][j] = true if [i,j]为回文,那么

P[i][j] = str[i] == str[j] && P[i+1][j-1]

代码

# Palindrome Partitioning II
# 时间复杂度O(n^2),空间复杂度O(n^2)
class Solution:
def minCut(self, s: str) -> int:
n = len(s)
f = [0] * (n + 1)
p = [[False] * n for _ in range(n)]
# the worst case is cutting by each char
for i in range(n + 1):
f[i] = n - 1 - i # 最后一个f[n]=-1
for i in range(n - 1, -1, -1):
for j in range(i, n):
if s[i] == s[j] and (j - i < 2 or p[i + 1][j - 1]):
p[i][j] = True
f[i] = min(f[i], f[j + 1] + 1)
return f[0]

相关题目