跳到主要内容

Triangle

描述

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

分析

设状态为f(i, j),表示从从位置(i,j)出发,路径的最小和,则状态转移方程为

f(i,j)=min{f(i+1,j),f(i+1,j+1)}+(i,j)f(i,j)=\min\left\{f(i+1,j),f(i+1,j+1)\right\}+(i,j)

代码

# Triangle
# 时间复杂度O(n^2),空间复杂度O(1)
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
for i in range(len(triangle) - 2, -1, -1):
for j in range(i + 1):
old = triangle[i][j]
triangle[i][j] = old + min(triangle[i + 1][j],
triangle[i + 1][j + 1])
return triangle[0][0]