跳到主要内容

Target Sum

问题描述

You are given an integer array nums and an integer target.

You want to build an expression out of nums by adding one of the symbols + and - before each integer in nums and then concatenate all the integers.

For example, if nums = [2, 1], you can add a + before 2 and a - before 1 and concatenate them to build the expression +2-1.

Return the number of different expressions that you can build, which evaluates to target.

Example 1:

Input: nums = [1,1,1,1,1], target = 3
Output: 5
Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3.
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

Example 2:

Input: nums = [1], target = 1
Output: 1

Constraints:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

分析

本题可以转化为一个0-1背包问题,且恰好装满。令每个物品ii的重量wiw_inums[i],价值viv_i为0,背包能容纳的最大重量W=12(iwi+target)W=\frac{1}{2}(\sum_i w_i + target),该问题就变成,恰好填满背包有多少种不同的组合?

给背包内的物品赋予+号,背包外的物品赋予-号。背包装满后,背包内的物品重量之和是12(iwi+target)\frac{1}{2}(\sum_i w_i + target),背包外的物品重量之和是12(iwitarget)\frac{1}{2}(\sum_i w_i - target),二者相减,刚好是target

代码

// Target Sum
// Time Complexity: O(N*W)
// Space Complexity: O(W)
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
const int sum = std::accumulate(nums.begin(), nums.end(), 0);
if ((sum+target)%2 == 1) return 0;
if ((sum + target) < 0) return 0;

const int W = (sum+target)/2; // knapsack capacity
vector<int> dp(W+1, 0);
dp[0] = 1; // base case

for (auto num: nums) {
for (int j = W; j >= num; j--) {
dp[j] += dp[j-num];
}
}

return dp[W];
}
};