Target Sum
问题描述
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols +
and -
before each integer in nums and then concatenate all the integers.
For example, if nums = [2, 1]
, you can add a +
before 2 and a -
before 1 and concatenate them to build the expression +2-1
.
Return the number of different expressions that you can build, which evaluates to target.
Example 1:
Input: nums = [1,1,1,1,1], target = 3
Output: 5
Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3.
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1
Output: 1
Constraints:
- 1 <= nums.length <= 20
- 0 <= nums[i] <= 1000
- 0 <= sum(nums[i]) <= 1000
- -1000 <= target <= 1000
分析
本题可以转化为一个0-1背包问题,且恰好装满。令每个物品的重量为nums[i]
,价值为0,背包能容纳的最大重量,该问题就变成,恰好填满背包有多少种不同的组合?
给背包内的物品赋予+
号,背包外的物品赋予-
号。背包装满后,背包内的物品重量之和是,背包外的物品重量之和是,二者相减,刚好是target
。
代码
- Python
- Java
- C++
TODO
TODO
// Target Sum
// Time Complexity: O(N*W)
// Space Complexity: O(W)
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
const int sum = std::accumulate(nums.begin(), nums.end(), 0);
if ((sum+target)%2 == 1) return 0;
if ((sum + target) < 0) return 0;
const int W = (sum+target)/2; // knapsack capacity
vector<int> dp(W+1, 0);
dp[0] = 1; // base case
for (auto num: nums) {
for (int j = W; j >= num; j--) {
dp[j] += dp[j-num];
}
}
return dp[W];
}
};