跳到主要内容

Word Break

描述

Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

For example, given

s = "leetcode",

dict = ["leet", "code"].

Return true because "leetcode" can be segmented as "leet code".

分析

本题最直观的做法是 BFS,也可以用 DFS 和动态规划。

代码

DFS

# Word Break
# 深搜,超时
# 时间复杂度O(2^n),空间复杂度O(n)
class Solution:
def wordBreak(self, s: str, dict: set[str]) -> bool:
return self.dfs(s, dict, 0, 1)

def dfs(self, s: str, dict: set[str], start: int, cur: int) -> bool:
if cur == len(s):
return s[start:cur] in dict

if self.dfs(s, dict, start, cur + 1): # no cut
return True

if s[start:cur] in dict: # cut here
if self.dfs(s, dict, cur, cur + 1):
return True

return False

BFS

// Word Break
// BFS
// Time Complexity: O(n^2), Space Complexity: O(n)
public class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
Set<String> set = new HashSet<>(wordDict);
Queue<Integer> queue = new LinkedList<>();
boolean[] visited = new boolean[s.length()];

queue.offer(0);
while (!queue.isEmpty()) {
int start = queue.poll();
if (!visited[start]) {
for (int end = start + 1; end <= s.length(); end++) {
if (set.contains(s.substring(start, end))) {
queue.offer(end);
if (end == s.length()) {
return true;
}
}
}
visited[start] = true;
}
}
return false;
}
}

动规

本题可以视为一个完全背包问题,令函数f(i)表示s[0,i)是否可以分词,则状态转移方程为

f(i) = any_of(f(j) && s[j,i] in dict), 0 <= j < i

// Word Break
// 动规,时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
Set<String> dict = new HashSet<>();
dict.addAll(wordDict);
boolean[] dp = new boolean[s.length() + 1];
dp[0] = true; // base case, empty string
for (int i = 1; i <= s.length(); ++i) {
for (int j = i - 1; j >= 0; --j) {
dp[i] = dp[i] || dp[j] && dict.contains(s.substring(j, i));
}
}
return dp[s.length()];
}
}

相关题目